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Abstract. Smell maps are geo-localized representations of the odors present in an
environment as perceived by humans. They provide a convenient mean to assess the
smellscape of urban areas, determine regions with heavy impact on the population,
and measure the reach of industrial emissions. However, their use is not widespread
because they are laborious to generate and easily outdated, as they rely on in-place
human annotations of the perceived smells. In this work we study the feasibility of
automatizing the generation of smell maps by means of a wearable electronic nose
(e-nose) as replacement for the human sense of smell; being our main objective
the analysis of whether this technology can be employed to map the subjective in-
formation inherent in smells. We have collected to that end a dataset composed of
more than 450 labeled samples of 10 different smells with a wearable e-nose, and
performed a thorough comparison of several machine learning algorithms to evalu-
ate their suitability for this task. As a second contribution, we present a smartphone
application developed to record (in situ) e-nose measurements and GPS coordinates
as well as the human perception of smells (using a form-based input method). Fi-
nally, we present an illustrative example with several automatically generated smell
distribution maps and discuss their accuracy.
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1. Introduction

General awareness regarding smog and urban air pollution has greatly increased during
the past decade due to their negative impact on public health as well as on the environ-
ment [1]. Still, the smell urban areas, understood as the subjective perception of both
pleasant and unpleasant odors, has been neglected until quite recently despite its psy-
chological impact on the mood and well-being of residents [2]. For instance, sulphur
based gas emissions from waste-water treatment-plants are regulated by law to protect
the health of nearby population, whereas the highly unpleasant odors of the exposed
sewer water remains an unaddressed issue and source of complaints.

New initiatives like smellwalking [3], the localization of smells on a map, aim to
change this situation by assessing the smellscape of major cities. However, it is an ar-
duous task that requires an elevated number of human sniffers and constant updates to
be meaningful [4]. In this regard, we propose to automate the task of smellwalking by
introducing an electronic nose (e-nose) as replacement of the human sense of smell.

It must be noticed that opposed to pollution monitoring [5,6], we are not interested
in the concentration measurement of chemical volatiles (e.g. CO, H2S, o3, etc), but in
perceiving gases in such a way that can be matched to the human perception of smells. In
this regard, e-noses are good candidates because they consist of an array of non-selective
gas sensors that respond indistinguishably to various chemicals, but whose combined
output can be processed by a classification algorithm to recognize their identity [7]. Of
course, the spectrum and concentration of volatiles an e-nose can detect is much lower
than that of a human, yet it is usually enough to recognize simple odors like garbage or
tobacco smoke [8].

Still, recognizing smells with an e-nose remains a challenging problem. One major
constraint is the elevated, and sometimes immeasurable, number variables that affect our
sense of olfaction, like climatic conditions [9] (e.g. temperature, humidity, air pressure)
or emotional factors [10] (e.g. pleasantness, exposition time, subjective connotations).

Accordingly, this work studies the feasibility of training an e-nose classifier to rec-
ognize simple odors. We have collected to that end an extensive dataset of continuous
and geo-referenced sensor readings of an e-nose, labelled according to the the subjec-
tive perception of the person who carried it and recorded at different locations (prome-
nades, residential areas, etc). We also compare the performance of some common ma-
chine learning algorithms [11] when classifying e-nose readings in order to choose one
among decision trees (DT), linear discriminant analysis (LDA), support vector machines
(SVM), and convolutional neural networks (CNN). Through this, we pretend to test and
validate the generation of automatic smell distribution maps under the most favorable
conditions.

The remainder of this paper is organized as follows. Section 2 describes the e-nose
and data acquisition system, followed by a report of the collected dataset in Section 3.
Next, Section 4 discusses the best classification algorithms for odor classification, and
Section 5 employs it for the automatic generation of various urban smell maps. Lastly,
Section 6 offers a summary of conclusions and suggests possible improvements for future
research.
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2. Data Acquisition System

This section is devoted to our data acquisition system: a smellwalking app and a wearable
e-nose for smartphones. Together, they enable the wearer to easily tag any encountered
smell, creating over time a labeled dataset of the e-nose’s transient response.

Our design goal was to keep the system as unobtrusive and lightweight as possible,
which led to a wearable design that exploits the widespread use of smartphones. Ac-
cordingly, the hardware on the e-nose was kept to the bare minimum (i.e. gas sensors,
OTG-communications, and a battery), while most of the functionality was relayed to the
app, including user interface, data storage and GPS localization.

2.1. Wearable Electronic Nose

All measurements were recorded with the e-nose shown in Figure 1. It is based on an
modular architecture for e-noses [12] that integrates heterogeneous gas-sensor technolo-
gies and auxiliary peripherals (e.g. battery, communications) in a customizable design.
It was consequently very easy to adapt to our project’s needs, specially in terms of size
and portability.

Since our purpose is to classify urban smells, we chose sensors that should be spe-
cially sensitive to chemicals present in smog (e.g. CO, SO2, ammonia) [13] as well as
others for more generic organic compounds (e.g. hydro carbons, VOCs).

Concretely, the e-nose hosts 7 gas sensors: 1 Electrolytic SO2 sensor by Alpha-
Sense, 3 MOX sensors by Figaro (TGS2600, TGS2602, and TGS2611), and 3 MOX sen-
sors by SGX (dual MICS-4514, and MICS-5524), plus 2 temperate (integrated within
the MSP430f5309 MCU) and 1 relative humidity sensor (HIH-4000). Under this config-
uration the e-nose works at an output rate of 20Hz, drawing about 1.300 W from a 1100
mA 3.3 V, and yielding approximately 2.5 hours of continuous application.

We must stress that the size of the e-nose was kept to a minimum. Thus, data logging
is only possible with the smartphone application (i.e. the e-nose carries no memory mod-
ule), and communications are only possible over the OTG-USB cable, as the Bluetooth
module would imply a greater footprint size as well as additional energy consumption.

Figure 1. Wearable e-nose
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(a) Geotagged map (b) Smartphone application

Figure 2. (a) the app’s main window that shows the locations of previously tagged smells, and (b) screenshots
of the sensor’s real-time monitor (on the left) and the smell labelling menu (on the right).

2.2. Smartphone Application

Our smartphone app enables the user to log smells in a simple and intuitive way, while
it continuously records the e-nose sensors over OTG-USB and stores them in a database.
In addition, the app exploits the smartphone’s hardware (GPS, temperature, pressure...)
to obtain information from internal sensors to further enrich the aforementioned e-nose
data.

When the electronic nose is connected, the app shows a map with all the smells
introduced during the session as shown in the left screenshot of Figure 2a. This allows
to obtain an overview of the route followed and the labelled smells. Advanced users can
also monitor the signal of each sensor through a real time graph, as shown in the left
screenshot of Figure 2b. This allows the detection of errors in the hardware, avoiding the
log of incorrect data.

When the user detects a smell, he only has to fill in a small form shown in the right
screenshot of Figure 2b. Each encountered smell can be labelled to a smell-category (i.e.
flower, garbage, etc) and tagged according to its pleasantness and intensity [14] (both in
a scale between very low and very high). Plus, the user may add an optional comment to
the label for consideration during any subsequent data processing (e.g. information about
surrounding events, like traffic).

Also, the smartphone app features some utilities to facilitate smell identification and
aid during cooperative data acquisition (i.e. smell mapping from several users); such
as a label-name manager, automatic prompts when the sensors exceed a configurable
threshold, or a service to send the database by email.

3. Urban Smell Dataset

This section describes the collected smell dataset, recorded with the previously described
e-nose and labelled on the smartphone app according to the users’ subjective perception.
It has been gathered in Malaga, Spain, at different locations that are representative of
specific urban life-styles. These include various quite residential and commercial areas, a
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Table 1. Distribution of the user-entered smell label in the dataset
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touristic sea-promenade (El Muelle Uno), an open-air shopping mall (Plaza Mayor), and
our university campus; all visited under different ambient conditions to obtain a varied
range of samples.

We labelled all encountered smells with a common set of objective categories [10],
like the smell of food or tobacco smoke, to establish a reasonably impartial naming
convention. This includes an explicit label for places with clean and fresh air (i.e. no
smell at all) as well, which is intended to register the e-nose’s response in the absence of
odors. Furthermore, all smellwalks were performed with the e-nose hanging like a key-
chain on our backpacks, which ensured that the recordings contained the general smell
of the ambient air, and limited to a maximum duration of 1 hour to account for human
olfaction numbness [15,16].

In the end, we recorded more than 48.000 e-nose measurements over a period of
6 months, accounting for 13 hours of continuous data, a travel distance of 47 km, and
457 user-entered smell labels (shown in Table 1). These are the final result of manually
purging the data from incongruent user-entries, like removing all labels that had miss-
ing attributes (e.g. smell intensity). The final dataset is available for download at our
webpage2.

4. Matching Odors with Chemical Data

In principle, all that is needed for an efficient urban smell recognition with an e-nose is
a classification algorithm trained with an appropriately labelled smell dataset. However,
this is not an easy task due to the inherent complexity of smells. Even if it were feasi-
ble to label the immeasurably wide range of urban odors to train a classifier, it would
still be impossible to distinguish them with the current gas-sensor technology. The sen-
sory capabilities of e-noses (and specially that of our wearable version with only 7 gas-
sensors) remain below of human olfaction [17,8], reason why most e-nose applications
are only targeted at a narrow set of substances (e.g. classification of wines [18], dairy
products [19], or olive oil [20]).

Still, our intend remains to study the feasibility of employing an e-nose to map urban
odors, which in turn requires an estimate of how many individual smells can be recog-
nized with our wearable version. We have trained to that end a CNN (one of the proposed
classifiers) with different smell grouping strategies, ranging from grouping similar tags
together to training with all of them separately as shown in Table 2.

On account of these results, we addressed the classification task by grouping the
labels from our dataset into three large categories to represent the overall characteristics

2http://mapir.uma.es/mapirwebsite/index.php/277-labelled-e-nose-dataset

http://mapir.uma.es/mapirwebsite/index.php/277-labelled-e-nose-dataset
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Table 2. Tentative classification results depending on the number of smell categories into which the individual
smell labels can be grouped.

Number of categories
Accuracy Precision Recall

µ σ2 µ σ2 µ σ2

3 Categories 0.7203 3.360e−04 0.7940 3.145e−04 0.7748 1.615e−03

4 Categories 0.4601 1.115e−03 0.5821 2.399e−03 0.6138 3.724e−04

6 Categories 0.3112 4.957e−04 0.5705 7.295e−04 0.5648 8.730e−03

8 Categories 0.2442 4.899e−05 0.3867 1.617e−03 0.4055 9.682e−03

All dataset labels 0.1245 4.269e−05 0.2579 6.050e−04 0.2617 1.506e−03

of urban air. These are: (i) clean air with no smell at all, (ii) traffic emissions and smog,
and (iii) any other smell (e.g. food, garbage, flowers, etc.).

It must be noticed that although we employed a CNN classifier to establish the num-
ber of smell categories, it may be possible that other algorithms achieve better results. We
proceed therefore with the extraction of features from the samples, as required by com-
mon classifiers, followed by a detailed comparison of their classification performance.

4.1. Signal Preprocessing and Feature Extraction

Given the slow response time of e-noses (usually in the range of seconds [21]), we took a
30 seconds wide time-window around each user-label to excerpt a sample of the e-noses
transient response. This ensured that we no longer depended on whether the user and the
e-nose detected the smell at exactly the same moment, and provides more information
for the feature extraction [22] than instantaneous e-nose readings alone. Concretely, for
each of the 7+3 sensors in our e-nose we extracted 4 features from fitting their response
to a 4th degree polynomial curve [23], and 4 features from their Fourier transform [24];
yielding a total of 80 features per labelled e-nose sample. In addition, we further reduced
these 80 features through Principal Component Analysis (PCA) to generate a second
and optional feature dataset. Our intention was to retain only the subset of features that
carried the most significant information, and thus tested the effect of removing redundant
information from the training data [25] to seek the best possible smell classifier.

Notice that we only employed the e-nose’s sensor-readings during the feature extrac-
tion stage, leaving the smartphones’ ambient sensors out (e.g. pressure and temperature).
Not only because their availability and response characteristics varied too much between
our different smartphones models, but also because they were very unreliable and noisy,
which would encumber the subsequent training stage.

4.2. Classifier comparison

The purpose of this section is to compare the classification capabilities of the afore-
mentioned machine learning techniques, namely decision trees (DT), linear discriminant
analysis (LDA), support vector machines (SVM), and convolutional neural networks
(CNN). We train them to that end with our dataset and compare their performance in
terms of accuracy, precision, and recall to choose the fittest for smell classification.

All tested techniques other than CNN were implemented with scikit-learn 3, a ma-
chine learning library for Python, and trained with both the complete and the PCA-

3 http://scikit-learn.org



Authors’ accepted manuscript: Frontiers in Artificial Intelligence and Applications
(FAIA), IOS Press, 2018. doi: 10.3233/978-1-61499-929-4-134

filtered feature datasets. For CNN, on the other hand, we employed Tensorflow 4, a ma-
chine learning framework that works with Python as well, but which is better suited
for neural networks and our NVIDIA high-performance GPU. We must stress that in
this case, instead of using the extracted features from the procedure described above,
we trained with the raw dataset as the self-learned kernels of a CNN extract their own
features [26].

In all cases, we validate the classifiers with 50 cross validation runs [27] and re-
peatedly dividing the samples into 70% for training and 30% for testing. Thus obtaining
a better estimation of the true performance of the classifiers, which were configured as
follows:

• Decision Tree: the DT training was performed in a top-down fashion using the
Gini impurity criterion to split the branches to a maximum depth of 10, which
proved to offer the best results. Analogously, the PCA filter was set to 10 dimen-
sions.

• Linear Discriminant Analysis: we trained LDA with an singular value decom-
position (SVD) solver and, when applicable, the 15 most significant features of
the PCA dataset.

• Support Vector Machine: after testing different configurations, we obtained the
best results for SVM with a linear kernel and gamma set to default. Again, PCA
was set to 15 dimensions for best results.

• Convolutional Neural Network: The design of the CNN follows a variation of
the standard CNN architecture[28], with 7 convolutional layers, some of them
consisting in separated vertical and horizontal filters, followed by two Fully Con-
nected layers, and a softmax function applied over the last one. Because the main
data types which a CNN works with are images [29,30], all e-nose measurements
(vectors with the output of the individual sensor) were rearranged into matrices
by aggregating adjacent samples. This way, each label gets associated not only
to the e-nose’s instantaneous response, but to its transient evolution. Lastly, we
optimized the hyperparameters with a grid search, exploring slightly different ar-
chitectures and layer depths.

After running the cross validation test for our three target categories (clean air, emis-
sions, and others), we obtained the results that are shown in Figure 3. The classifiers that
were trained with the 80-features dataset, namely DT, LDA and SVM, behave similarly

4 https://www.tensorflow.org/

Figure 3. Accuracy, Recall and Precision of the tested classifiers, showing the average (bars) and standard
variation (rods) for 50 cross validation runs.



Authors’ accepted manuscript: Frontiers in Artificial Intelligence and Applications
(FAIA), IOS Press, 2018. doi: 10.3233/978-1-61499-929-4-134

in all three performance measurements. They have an average accuracy of 65%, a recall
of 55%, and a precision of 45% (all with a standard deviation of 20%), which slightly
increase by 2% when trained with PCA-filtered feature dataset. SVM+PCA stands par-
ticularly out, as this combination is very unreliable yet achieves the highest test result of
all classifiers. As for the CNN classifier, it attained higher average performance indices
(above 74% for all three measures) with a much lower standard deviation (less than 4%),
which translates into highest reliability and robustness.

As can be observed, the overall classification performance is relatively low, even
with the classification task simplified to three categories. This is probably due to the
reduced number of available gas-sensors on our e-nose, and to the wide range of possible
responses they may produce depending on the intensity of the target smells as well as the
ambient conditions. These results also show that the manually extracted training features
can not compete with the CNN kernels, which learn to produce their own. So while we
could try to extract better features, leaving the CNN learn its own filters seems to be the
best option.

In light of this, we can conclude that the CNN achieves the best results, despite not
reaching more than 75% accuracy. Still, it should be enough to generate coarse maps of
urban smell distribution.

5. Generation of Urban Smell Distribution Maps

This section discusses the generation of smell maps with the recorded e-nose data and,
given the results of the previous section, the CNN classifier. Our intention is to test
whether the smell classification was successful (beyond the numeric classification re-
sults) by comparing these maps to the user-entered labels.

As opposed to the training stage, where we only fed the classifier with user-labelled
data (Figure 4a), we now process all e-nose measurements in a continuous fashion to
identify their smell (Figure 4b). Concretely, we treat the output of the CNN as a cate-
gorical probability distribution (since the last layer uses a softmax function) rather than
a binary label, such that it may be represented as a linear combination of the output cat-
egories. Accordingly, Figure 5 shows the classification results of some of the recorded
smellwalk as an RGB combination of colors; where the red component refers to the prob-
ability of belonging to traffic emissions, blue to clean air, and green to other smells. The
maps show this way primary colors at all locations where the classifier is confident, and
smooth transitions (like yellow or white) between them. We also plot the user-labelled
smells to serve as ground truth and therefore assess the accuracy the generated maps.
They are displayed with the same color code, but with a different shape (to distinguish
them) and varying size (depending on their perceived intensity).

Overall, the classified e-nose measurements seem to be consistent with the recorded
smell labels and with their physical surroundings. For example, samples classified as
”traffic emissions” appear at bus stops (Figure 5a), around parking entrances (Figure 5a),
at avenues with high traffic flow (Figure 5c) or at slopes where cars have to acceler-
ate (Figure 5b). Likewise, ”fresh air” appears at the promenade (Figure 5a) and quite
residential streets (Figure 5b).

There are however several mismatches. Figures 5a and 5b show false-positives of
”traffic emissions” at restaurant areas and, surprisingly, near bronze sculptures in Fig-
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(a) User defined labels (b) User and automatic labels

Figure 4. Conceptual interpretation of how the original labels (a) get augmented by the classification algorithm
(b) to create continuous smell maps. The information gap between the user-entered labels (filled triangles) are
filled out with smell predictions (empty triangles) to represent their actual extend, and to detect other smells
that were possibly overlooked.

ure 5a; and the southern motorway in Figure 5c gets missclassified as ”others” instead.
This is probably caused by the limited number of available gas-sensors and the lack of
more training data to improve our classifier. Also, changes in ambient conditions also
affect the results, despite our best efforts to compensate them with the e-nose’s humidity
and temperature sensors.

The samples classified as ”other” (green) are of a very disparate nature: they include
nice smells, like perfume and flowers, unpleasant odors such as garbage, and neutral aro-
mas, such as food and chemical compounds. Their strong presence on all maps suggest
that the e-nose is able to detect more smells than the human sniffers aware of, a reflection
of the complex background of urban smells we have unconsciously learned to ignore.

Overall, the accuracy of the smell maps is consistent with the performance results
of the employed classifier (see Section 4.2). This reflects the sensing limitations of the
available e-nose technology, as well as the intrinsic difficulty of matching odors accord-
ing to a subjective perception. Even so, the accuracy of the obtain maps is sufficient to
identify locations that suffer from smog related odors together with places that possess
clean air with no smell at all. Meaning that the employment of e-noses is indeed feasible
but limited to the generation of coarse smell distribution maps.

6. Conclusions

This work shows that the generation of reasonably accurate smell distribution maps with
an e-nose is feasible. The only requirements are a labelled dataset of the e-nose’s re-
sponse to the target smells and an appropriate classification algorithm. In this regard, we
have tagged over 450 urban smells with a smartphone application, and recorded over 47
km of continuous e-nose measurements. Also, we have conducted an extensive compar-
ison of several popular classifiers, among which Convolutional Neural Networks ranked
first to produce distributions maps for traffic emissions, clean air, and other urban smells
at three different locations in Malaga (Spain).

Admittedly, the accuracy and resolution of these maps remain below of those gener-
ated by human sniffers. However, they are a first step toward the development of an auto-
matic tool to assess the smellscape of major cities in real time. In any case, we are confi-
dent that we will be able to further improve the classification success ratio by increasing
the dataset’s size (more training examples) and by fine-tuning the characteristics of our
CNN classifier in future research.
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(a) Sea promenade El Muelle Uno (N36◦71′ W4◦41′).

(b) Residential area (N36◦72′ W4◦38′). (c) HTS Computer Science (N36◦71′ W4◦47′).

Figure 5. Visualization of the user-defined labels (pins) and the output of the CNN smell classification (con-
tinuous path) at three different locations. Each color represents a smell category, although gradual transitions
may exist. In particular, red stands for traffic emissions and smog, blue for clean air (i.e. no smell at all), and
green for any other smell. The size of the pins represents the user-perceived intensity, where bigger means
more prominent smells.
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